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Abstract—Everyone is concerned about Internet security, yet most
traffic is not cryptographically protected. Typical justification is that most
attackers are off-path and cannot intercept traffic; hence, intuitively,
challenge-response defenses should suffice to ensure authenticity. Of-
ten, the challenges re-use existing header fields to protect widely-
deployed protocols such as TCP and DNS.

We argue that this practice may often give an illusion of security.
We review recent off-path TCP injection and DNS poisoning attacks,
enabling attackers to circumvent existing challenge-response defenses.
Both TCP and DNS attacks are non-trivial, yet practical. The attacks
foil widely deployed security mechanisms, and allow a wide range of
exploits, such as long-term caching of malicious objects and scripts.

We hope that this review article will help improve defenses against
off-path attackers. In particular, we hope to motivate, when feasible,
adoption of cryptographic mechanisms such as SSL/TLS, IPsec and
DNSSEC, providing security even against stronger Man-in-the-Middle
attackers.

Keywords: off-path attacks, DNS cache poisoning, TCP injections,
challenge-response defenses.

1 INTRODUCTION
Since 1989 [1], experts have been arguing that Internet
security requires cryptographic protocols, ensuring secu-
rity against Man-in-the-Middle (MitM) attackers. A MitM
attacker is located on the path of the communicating
parties, and can manipulate the communication between
them in any way, i.e., intercept, modify, block and inject
spoofed packets; see the MitM Cookie Monster in Figure 1.

The information security community invested signif-
icant efforts in developing cryptographic schemes and
protocols, standards and products, providing security
against MitM attackers, such as IPsec, SSL/TLS, Secure-
BGP and DNSSEC. In spite of all these efforts, and al-
though Internet security is well recognised to be critical,
most Internet traffic is still not cryptographically pro-
tected. For example, we found that only about 6% of the
TCP traffic is cryptographically protected with SSL/TLS
(based on CAIDA dataset of 3 million packets [2]); and
less than 1% of the DNS resolvers enforce DNSSEC
(cryptographic) validation [3].
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Fig. 1. Off-Path Attacker Network Model.

We believe that the main reason for the underutili-
sation of cryptography, is an illusion of security against
network-based attacks, due to two false beliefs. The first
false belief, is that in reality, attackers can rarely obtain
MitM capabilities, and even when they can, they are
reluctant to do so since such activities may lead to de-
tection. We claim that this is incorrect; there are common
scenarios where attackers may obtain MitM capabilities,
e.g., by accessing wireless communication, by manipula-
tions of the largely unprotected routing mechanisms, or
by controlling some intermediate device. Furthermore,
such attacks are often carried out, without detection and
repercussions, e.g., route hijacking occurs frequently [4].

However, in this review, we focus on the second false
belief, which is that current, non-cryptographic, Internet
protocols already provide sufficient protection against
typical, common attackers, and in particular, against off-
path attackers.

Unlike a MitM attacker, an off-path attacker cannot
observe or modify legitimate packets sent between other
parties, however, he can transmit packets with a spoofed
(fake) source IP address - impersonating some legitimate
party, as illustrated by Off-Path Oscar in Figure 1. Spoofed
packets are used in many attacks, most notably, in Denial
of Service (DoS) attacks. Significant efforts are made to
make spoofing less readily available to attackers, most
notably ingress filtering ([RFC3704]). However, IP spoof-
ing is still possible via many ISPs, see [5] and [6]; hence,
the IP-spoofing ability is often available.

Our main goal in this review is to convince that this
second belief is (also) false, and that current Internet
protocols are often vulnerable even to an off-path attacker.
Specifically, we discuss a few recent results, that allow
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off-path attacks on basic Internet protocols: traffic injec-
tion into TCP connections and DNS cache poisoning.

The key to the off-path attacks that we discuss is
circumvention of challenge-response defenses. Challenge-
response defenses are often relied upon to distinguish
between (spoofed) packets from an off-path attacker and
(legitimate) packets from legitimate communication end-
point. In order to authenticate a response from a server, a
client sends a random challenge with the request, which is
echoed in the response. Since an off-path attacker, which
we dub Oscar, cannot eavesdrop on packets exchanged
between the server and the client, it appears that Oscar
would have to guess the challenge; hence, the (suffi-
ciently long, random) challenge allows to prevent Oscar
from crafting a packet with a valid response.

The security of most Internet applications, e.g., email,
web surfing, and most peer-to-peer applications, relies
on challenge-response mechanisms, mainly as part of the
underlying TCP and DNS protocols. For example, the
widely-used web-security mechanisms based on cookies
and other ‘same origin policy’ mechanisms, depend on
the security of both TCP and DNS.

Trivially, challenge-response mechanisms are ineffective
against MitM attackers, since they can eavesdrop on the
challenges and send the matching response. The false
sense of security is due to two false beliefs mentioned
above: that MitM capabilities are ‘rarely practical’ and
that existing challenge-response mechanisms, in par-
ticular, in TCP and DNS, provide sufficient defenses
against the (weaker and common) off-path attackers. The
goal/hope of prevention of off-path attacks is stated in
RFC standards: [RFC4953] for TCP and [RFC5452] for
DNS. The (false) belief is that TCP and DNS specifica-
tions and implementations (were enhanced to) provide
security against off path adversaries. Indeed, since its
early days, most Internet traffic is directed using DNS
and carried over TCP - where both are protected only
using challenge-response mechanisms. This is in spite of
many warnings, e.g., [1], [7], [8].

Most existing challenge-response mechanisms are
‘patches’, reusing existing fields in the protocol as chal-
lenges; as we later show, this is often the root of the vul-
nerability. DNS uses a random 16-bit TXID (transaction
identifier) field (which associates a DNS response with its
corresponding request); the TXID, however, is too short
to provide sufficient defense. TCP’s main defense is the
random 32-bit ISN (initial sequence number) [RFC6528]
(which identifies where the data ‘fits’ within the trans-
mission stream). Furthermore, many implementations
additionally use a random (16-bit) source port (which
identifies a client-side application) in requests, echoed
(as destination port) in responses [RFC6056].

Many attacks, and in particular those we describe in
the following sections, exploit the fact that each challenge
field has a different original purpose in the protocol,
and learn its correct response in a separate phase of the
attack; this ‘challenge-by-challenge’ strategy allows the

attacker to provide a valid response to all challenges in
feasible time.

We review vulnerabilities, allowing off-path attacks on
both TCP and DNS in (common) scenarios, i.e., where
Oscar can circumvent the existing challenge-response
mechanisms. Challenge-response defenses may fail in
several ways:

Insufficient entropy: challenges may be
insufficiently-long or non-uniform. Both types were
abused in attacks against old implementations of
DNS [9], [10] and TCP [11], [12].

Piggybacking: attacker may ‘piggyback’ fake con-
tent, onto valid responses (containing correct challenges),
exploiting IP fragmentation. Such attacks were presented
for DNS [13] and TCP [14], [15].

Side-channels: attacker may reduce the entropy of
the challenge, by exploiting the fact that challenges
mostly or wholly reuse existing protocol fields. Namely,
challenges are fields which already exist in requests
and are echoed in responses for some other purpose.
Such attacks were presented for DNS [16], [17], [18] and
TCP [8], [19], [20], [21], [22], [23], [24].

The root cause of many of these attacks is the at-
tempt to retrofit security, and in this case incorporate a
challenge-response mechanism, into an existing protocol.
By reusing existing protocol fields, the defenses were
deployed only by changing the clients, and without coor-
dinated changes in servers (and the protocol itself). Such
defenses are much easier to deploy - but also easier to
attack. Specifically, we discuss attacks that allow an off-
path attacker to learn the ‘dual-use’ challenge fields. This
allows off-path TCP injection and DNS cache poisoning.

It seems that good defenses may require changes to
the protocols themselves; this may be harder to deploy,
but will ensure security. The changes can be via explicit
and dedicated challenge-response mechanisms, e.g., [25],
or via deployment of cryptographic defenses, such as sig-
natures and MACs (Message-Authentication-Codes). The
cryptographic defenses, e.g., MACs, are computed by
the sender, using the sender’s private signing key or a
secret shared authentication key, and validated by the
recipient (using the sender’s corresponding public key
or a shared secret key). In contrast to challenge-response
defenses, such as [25], cryptography requires additional
infrastructures, e.g., a public-key infrastructure (PKI) or
other means to establish shared keys, as well as ad-
ditional computations and communication, but protects
even against MitM attackers, and is usually affordable
as even relatively limited clients such as ‘smartphone’
devices are equipped with highly capable processors and
broad-band communication capability.

1.1 History of Off-Path Attacks
TCP and DNS are basic protocols, and off-path attacks on
their authenticity - TCP injection and DNS poisoning -
impact almost all Internet applications. As such, it is
a common belief that they ensure integrity against an
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Fig. 2. Time-line of DNS Poisoning and TCP Injection attacks.

off-path attacker. However, security against off-path (or
MitM) attackers was not of the original design goals of
these protocols, and only minimal changes were done
to the specifications to support challenge-response de-
fenses, e.g., selecting identifiers at random.

Indeed, over the years, significant attention and efforts
were dedicated to validating and improving the off-
path security of TCP and DNS - and numerous off-path
attacks were launched, some of them widely publicised.
In Figure 2 we present a ‘time-line’ of important attacks
and security improvements, for both TCP (upper row)
and DNS (lower row).

The time-line begins in 1985, with publication of a TCP
injection attack based on the use of predictable sequence
numbers [8], and Bellovin’s seminal paper from 1989 [1],
pointing out that security should not be based on the
presumed off-path protection of DNS and TCP. Bellovin
presented vulnerabilities of (some) TCP implementations
to off-path attacks, and discussed potential exploits and
defenses.

Unfortunately, in spite of these warnings, until 1995
most TCP stacks still used trivially-predictable initial se-
quence numbers (ISN). This changed only after the noto-
rious TCP injection attack by Mitnick on Shimomura [19].
After the attack, many implementations changed to ‘less
predictable’ ISN choices. However, in 2001, Zalewski
showed that most implementations are still ‘sufficiently
predictable’, allowing off-path attacks; this motivated
adoption of more random choice of ISNs in most op-
erating systems, as standardised in [RFC6528].

In 2003, Zalewski also commented that ‘piggyback-
ing’ on fragmented TCP traffic may allow injection at-
tacks [14]; the piggybacking attack was improved in [15],
and exploited for DNS poisoning in [13].

A special TCP injection attack was presented by Wat-
son [11] in 2004. This attack only injected a ‘RST’ packet,
breaking up a connection, and focused on long-lived
connections using known client (and server) ports and
addresses, as used at the time by the Internet routing
protocol BGP. To address this concern, many TCP imple-
mentations also began using ‘unpredictable’ client ports.

In 2007, there were two surprising results: (1) a TCP
injection attack presented by the pseudonym author
klm in Phrack magazine [20], and (2) a DNS poisoning
attack exploiting poor random-number generators [9].
Both attacks were clever and significant, although with
limited scope. In particular, the attack on TCP worked
only against Windows machines, connected directly to

the Internet (rather than via firewall, as usually is the
case), and did not handle concurrent connections.

Kaminsky presented an even more significant DNS
poisoning attack in 2008, which allowed efficient off-
path poisoning of most DNS resolver implementations
at the time [10] (see Section 2). The response to this
attack was rapid adoption of additional ‘patches’, mostly,
more challenge-response fields, increasing the length of
the random challenge and therefore (hopefully) making
the attack impractical; the most notable patch was source
port randomisation (SPR); see [RFC5452].

Following 2008, there were several years without addi-
tional off-path attacks; Kaminsky’s attack was addressed
by SPR and other ‘patches’ to DNS-resolvers, and klm’s
attack was impractical and not widely known. This
changed dramatically in 2011-2013, with the publication
of ten new off-path attacks. The first, in 2011, was an
attack on fragmented IP traffic [15]. This was followed,
by four new DNS poisoning attacks [16], [13], [17], [18],
a connection-exposing attack [26] and four TCP injection
attacks [21], [22], [24], [23].

1.2 Malicious Agents
Some of the off-path attacks require, in addition to the
spoofing ability, also a malicious agent in the victim’s
network or host. We briefly explain the different agent
models.

A zombie is a machine controlled by the adversary, e.g.,
compromised by malware, in the victim’s network.

A puppet is weaker agent: a restricted malicious script
or applet running in web-browser sandbox. Attacks re-
lying on a puppet agent require (only) that a client
in the victim network ‘surfs’ to the attacker’s web-site,
enabling the adversary to run such a script. The script is
restricted by same origin policy (described in [RFC6454]),
and can only communicate via the browser, i.e., request
(and receive) HTTP objects (no access to TCP/IP packet
headers).

2 DNS CACHE POISONING
The Domain Name System (DNS) provides name to
address mapping for services in the Internet. DNS name
servers maintain the mappings for services in the do-
mains for which they are authoritative, and DNS re-
solvers are agents, used by clients, to retrieve the map-
pings from the name servers. Resolvers send requests to
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name servers, and receive responses. Prior to accepting
and caching the responses, they are validated; widely
deployed validations rely on challenge-response mech-
anisms. The resolvers send the challenges, e.g., in form
of a random 16-bit TXID field within the request, and
validate that the same values appear in responses. We
next explain that challenge-response defenses may fail
even against weak, off-path attackers.

2.1 Kaminsky’s DNS Cache Poisoning
In 2008, Kaminsky [10] presented an efficient cache
poisoning attack against resolvers which authenticated
responses using a random TXID and used a known
(fixed) source port, which at that time was 53. The steps
of the attack, illustrated in Figure 3, are the following:

(1) the attacker triggers a DNS request for a random
sub-domain of the victim domain $1.foo.com.

(2) DNS resolver receives the request and forwards it
to the target name server.

(3) the attacker then sends 216 responses with spoofed
source IP (of the name server); each response is a referral
mapping of the name server ns.foo.com to 6.6.6.6, an
IP address controlled by the attacker.

(4) the response containing the correct TXID is ac-
cepted, cached and returned to the client.

(5) authentic DNS response is ignored, since there is
no matching pending request.

If the attack fails, i.e., an authentic response from the
real name server arrived before the correct response from
the attacker, the attack is repeated with a new random
subdomain $2.foo.com.

Following Kaminsky’s attack, additional challenge-
response mechanisms were proposed to increase the en-
tropy in DNS requests, see [RFC5452]. The most popular
mechanism, supported by majority of the resolvers, is
source port randomisation (SPR), which, in tandem with
TXID, produce a search space of 232 values and was
believed to provide sufficient protection against poison-
ing by off-path adversaries. This reduced the motivation
for deployment of DNSSEC [RFC4033-4035], the crypto-
graphic defense against poisoning.

We found different techniques, [13], [16], [17], [18],
that allow to circumvent the popular defenses against
poisoning by off-path attackers. In this work we show
a simple technique, from [16], that uses side-channels
for ports’ prediction and applies to common network
scenarios, where the DNS resolvers are located behind
a NAT device (as in Figure 1).

2.2 Vulnerability of Resolvers Behind NAT
Network Address Translation (NAT) devices are used
to alleviate the problem of IPv4 addresses depletion
in the Internet, by allocating non-unique addresses in
local networks and sharing unique (external) addresses
between a number of internal hosts. The NAT devices
modify the source ports in outbound packets in order to
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Fig. 3. Kaminsky’s Attack.

correlate between the inbound packets and the internal
hosts.

NAT devices were patched to support port randomi-
sation to prevent attacks. However, as we show, even
systems that randomise ports in outbound packets may
expose resolvers to attacks. Specifically, in [16] we tested
NAT devices that support unpredictable port allocation
algorithms and are reported as secure by DNS-checkers,
yet are vulnerable to port derandomisation. Our attacks
exploit a standard, and correct, behavior of the devices,
e.g., recommended in [RFC6056]. What enables our at-
tacks are side channels, which may have not been consid-
ered during the design of these algorithms. In this section
we describe port derandomisation against per-destination
ports allocation, implemented by many systems; see [16]
for other popular algorithms.

PER-DESTINATION PORTS ALLOCATION. For a tuple
defined by 〈src-IP:src-port,dst-IP:dst-port,protocol〉, a
per-destination NAT selects the first port at random,
and subsequent ports are increased sequentially (for that
tuple).

PREDICT-THEN-POISON ATTACK. Off-path attacker,
Oscar, controls a zombie, i.e., non-privileged malware,
that runs on a client host in the LAN. The attack
is composed of two phases, illustrated in Figure 4:
port prediction and poisoning. During the port prediction
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phase, Oscar and the zombie expose the port that will be
allocated to the request of the DNS resolver. Next, dur-
ing the poisoning phase, Kaminsky’s attack is launched
(Figure 3).

(1) The zombie sends a packet to create a mapping in
the NAT table; in the example in Figure 4 we assume
arbitrarily that port 6666 was selected.

(2) Then, Oscar at address 6.6.6.6 sends 216 packets
with a spoofed source IP of 8.8.8.8, s.t. each is sent to a
different port of the NAT and each contains the desti-
nation port in its payload; only the packet to port 6666
arrives at the zombie.

(3) The zombie increments this port by 1, in our
example the result is 6667, and sends it to Oscar; this
is the external port that will be allocated by the NAT to
the subsequent DNS request of the resolver to the victim
name server.

This phase allows to bypass the SPR defense.

2.3 Empirical Evaluation
The recent DNS poisoning results ([16], [13], [17], [18])
were validated empirically in many different network
settings and for a large variety of devices. As a specific
example, we focus on the attacks in [16] which include
the predict-then-poison attack (described above); the vi-
ability of these attacks (and others) depends mainly on
the port allocation method at the NAT.

We tested the attacks in [16] against eight popular
NAT devices. Out of these, two used sequential port
allocation (Linux Netfilter and Windows ICS), and hence
were vulnerable to the predict-then-poison attack. Five
NAT devices (Fedora, Wingate, FreeBSD, Cisco IOS and
Cisco ASA) were vulnerable to the trap attacks, also
from [16], and only one (Checkpoint FW-1) was immune

to the attacks in [16]. All tests were done against a Bind9
DNS resolver, connected via the different NAT devices
to the attacker.

We also checked port allocation methods in DNS re-
quests (sent over UDP), using traces from two CAIDA
datasets from 2012 [2], and found that 30% of the re-
quests were sent from a fixed port and 54% of the
requests were sent from incrementing ports.

3 TCP INJECTIONS
The Transmission Control Protocol (TCP) is the main
transport protocol of the Internet, carrying most of the
communication between clients and servers. The recent
off-path TCP injection attacks operate in two phases:
(1) Learn Connection Four-Tuple. Oscar, the off-path at-
tacker, learns the four parameters of a TCP connection
between a client and a server, that is, their respective IP
addresses and ports.
(2) Learn Sequence Number. Oscar learns the current
sequence number, for packets sent from the server to the
client or vise versa.

After the attacker learns the connection four-tuple and
one of the sequence numbers, he can inject data into the
TCP connection, impersonating as one of the participat-
ing peers to the other. Table 1 surveys the techniques
used in recent injection attacks for both phases and their
requirements. In the reminder of this section we present
a simple implementation for each phase.

3.1 Learn Connection Four-Tuple
In order to launch an injection attack, Oscar must first
identify a TCP connection between the victim client
and server. Some methods for identifying this connec-
tion scan the victim’s machine, either remotely ([20]) or
locally ([24], [23]); see Table 1.

In this subsection we describe a simple method which
uses a puppet (script restricted by browser sandbox)
running on the client machine to open such a connection.
Since Oscar opens the connection he chooses the server,
and the server’s IP address and port are known. To find
the client’s IP address, the puppet sends a request to
Oscar’s site; this request contains the client’s IP address.

The final challenge of this phase is to detect the
client port. In [22] we showed how to break the ran-
domised port selection algorithm which was standartised
in [RFC6056], and used by Linux and Android clients;
this attack exploits the TCP state machine, which leaks
to the off-path attacker information about the choice of
the client port.

However, in many cases the attack is simpler since
the clients (in particular, those running Windows) do
not use a randomised algorithm, and assign ports to
connections sequentially; we exploited this port selection
method in [21], as follows: The puppet opens a con-
nection to Oscar’s remote site before and after opening
the connection to the victim server; Oscar observes p1
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Learn Connection Four-Tuple Learn Sequence Number

klm [20] Remote probing for connection
(Windows client, no firewall)

Side channel
(Windows client)

Qian
et al. [24], [23]

Local probing for connection,
e.g., with netstat

(Malware)

Read client system-counters,
(Malware; in [24] also seq. # checking firewall)

Gilad and
Herzberg [21]

Establish connection, exploit
sequential port allocation impl.

(Puppet, Windows client)

Side channel
(Puppet, Windows client)

Gilad and
Herzberg [22]

Establish connection,
client port derandomisation

(Puppet, client behind firewall)

exploit HTTP-client state machine,
(Puppet, no TLS/SSL)

TABLE 1
Off-Path TCP Injection Attacks: Building Blocks. In parentheses: requirements.

and p2, the client ports used in the connection to his
sites. If p2 = p1+2, then he learns that the connection to
the server is via port p1+1 (otherwise Oscar restarts the
attack).

3.2 Learn Sequence Number

The next step after identifying the victim-connection,
is learning one or both of the connection’s sequence
numbers. Off-path attackers use different methods to
infer the sequence numbers (since they cannot observe
them directly). We focus on the technique of [22] which
exploits an under-specification of HTTP to learn the client’s
sequence number.

BACKGROUND. As of HTTP 1.1, clients can send mul-
tiple requests to the same web-server in pipeline over
a single (‘persistent’) HTTP connection. In order to al-
low browsers to match between each response and the
corresponding request, the server sends the responses
exactly in the order in which it received the requests. The
browser (client) keeps a FIFO queue of pending HTTP
requests for each connection, and handles them one by
one, as follows. To handle a request, the browser reads
the bytes in the TCP connection’s receive-buffer (when
they become available). The browser expects to find the
matching response in the beginning of TCP’s receive-
buffer and parses the response.

The HTTP standard does not specify what the browser
should do when the receive-buffer contains data which
is not a valid (‘parsable’) HTTP response. Browsers often
handle this situation as follows: they treat all available
data in the receive-buffer as payload of a response with
the following default HTTP header:

HTTP/1.1 200 OK
Content-Type: text/html; charset=us-ascii
Content-Length: available-data-size

The browsers return this ‘response’ to the requesting
module, normally, the rendering engine.

SEQUENCE NUMBER LEARNING TECHNIQUE. The
learning phase has two steps: Inject and Observe, illus-
trated in Figure 5. In the inject step, Oscar injects data
into the stream of HTTP responses that the server sends

to the client. This data is read in the observe step, which
allows Oscar to determine the server’s sequence number.

(A) Inject step. Let wnd denote the browser’s receive-
buffer for the connection and |wnd| denote its size. In
order to inject the data, Oscar sends to the browser 232

|wnd|
packets, spoofed to appear to be from the server (on its
victim-connection with the client). The ith packet has
server sequence number i · |wnd|; since the sequence
number field is 32-bits long, exactly one of these packets
has a ‘valid’ sequence number, which falls within the
limits of wnd; all the other packets are discarded by
the client. Each of Oscar’s packets contains as payload
page(i) which is a simple web-page defined as follows:

<HTML><BODY>
<iframe src = "oscar.com/i.html" />
</BODY></HTML>

(B) Observe step. In this step, the puppet makes
prevalent requests to the server, until it reaches the data
injected by Oscar in the previous step. Each server-
response that arrives at the client shifts wnd forward;
after several such responses arrive, there is no gap of
unreceived bytes between the injected data and the
beginning of wnd. Then, the browser reads the injected-
response, assuming that it corresponds to the request.

The last server-response usually overwrites the begin-
ning of the injected data (according to the TCP specifi-
cation, in case of overlap, new data supersedes the old),
therefore, the injected ‘response’ will usually be corrupt.
However, as noted above, many browsers handle the
injected data as payload ‘wrapped’ with a default header.
When the browser renders page(i), it tries to retrieve i.html
from Oscar’s web-site (see Figure 5); providing to Oscar
the value of i. In order to keep page(i) intact despite the
overwrite, when Oscar sends page(i) in the inject step,
he prepends to it an easily removable pad. The value
of i allows Oscar to compute the next server sequence
number that the client expects.

3.3 Empirical Evaluation
We evaluated the Inject and Observe technique on con-
nections with the 1000 most popular web-sites according
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Fig. 5. Sequence Number Learning Technique.

to Alexa ranking. We placed the attacker and client ma-
chines in the same network, which allowed the attacker
to send packets to the Internet using the client’s IP
address (in reality, the attacker would connect through
one of the many ISPs that do not perform ingress fil-
tering, see discussion in Introduction). The client and
attacker connect through different physical interfaces
of a network switch; hence, attacker is off-path, i.e.,
cannot observe packets to/from the client. The client and
attacker connect through 10Mbps link to the Internet.

In order to identify a successful exposure of the se-
quence numbers, we used the puppet to request a non-
existing object from the server and injected a spoofed
HTTP OK response. If the puppet identified the spoofed
OK response, then we determined that the data injection
was successful and the attacker obtained the correct
sequence numbers.

RESULTS. We performed three executions of the attack,
using different popular browsers: Chrome (v23), Fire-
fox (v16) and Internet Explorer (v9); all three browsers
parse HTTP responses as described above, therefore,
their TCP connections are vulnerable to the Inject and
Observe attack. The attack had success rate of 78%
on connections with the tested popular websites, and
requires approximately 2.5 minutes to launch.

4 EXPLOITING INJECTION AND POISONING
To conclude our discussion of off-path TCP injection and
DNS poisoning attacks, we briefly discuss some potential
exploits.

Exploiting DNS poisoning is straightforward. Both
users and programs use DNS extensively to resolve

domain names; DNS poisoning allows circumvention
of security mechanisms, e.g., SPF and blacklists, and
‘hijacking’ of connection requests to legitimate servers.
In particular, ‘hijacking’ can allow phishing, where a user
thinks that he interacts with a trusted site, while he
actually deals with a fake site (exposing credentials, in-
stalling malware, etc.). The poisoned mapping is cached
and hence can impact many users of the resolver.

Exploiting TCP injections is more challenging, since
TCP is a transport protocol and does not involve caching.
However, in common scenarios, TCP injections can allow
critical exploits. In particular, TCP injections suffice to cir-
cumvent the Same Origin Policy, hijack ‘cookies’ and cause
execution of malicious scripts (XSS). In order to cause
long-term impact similar to DNS poisoning, attackers can
exploit caching of objects by web caches. By crafting the
HTTP headers of his injected packets, Oscar can cache
spoofed objects (e.g., web-pages) for long time. When
using a web-cache, this can impact many users (see [22]).

5 CONCLUSIONS
The vulnerabilities reviewed in this article show that
relying on challenge-response mechanisms against off-
path attackers can often be circumvented. Specifically, the
techniques discussed in this article allow off-path attack-
ers to circumvent the main challenge-response defenses:
source port randomisation and initial sequence number ran-
domisation.

Our message is that defenses should be designed and
analysed carefully, and not ‘patched’ by reusing existing
fields whose entropy may be insufficient or reduced by
side-channels. In particular, in order to prevent these
and other attacks, even by (stronger) MitM attackers,
we recommend deployment of cryptographic defenses,
in the common scenarios where the computational and
communication overheads are acceptable.
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